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Our ability to understand and predict the response of ecosystems
to a changing environment depends on quantifying vegetation func-
tional diversity. However, representing this diversity at the global
scale is challenging. Typically, in Earth Systems Models, characteri-
zation of plant diversity has been limited to grouping related species
into Plant Functional Types (PFTs), with all trait variation in a PFT
collapsed into a single mean value that is applied globally. Using the
largest global plant trait database and state of the art Bayesian mod-
eling, we created fine-grained global maps of plant trait distributions
that can be applied to Earth System Models. Focusing on a set of
plant traits closely coupled to photosynthesis and foliar respiration
– specific leaf area (SLA), and dry mass-based concentrations of leaf
nitrogen (Nm) and phosphorus (Pm), we characterize how traits vary
within and among over 50,000 ≈ 50 × 50 km cells across the entire
vegetated land surface. We do this in several ways - without defining
the PFT of each grid cell, and using 4 or 14 PFTs; each model’s pre-
dictions are evaluated against out-of-sample data. This endeavor ad-
vances prior trait mapping by generating global maps that preserve
variability across scales by using modern Bayesian spatial statistical
modeling in combination with a database over three times larger than
previous analyses (Van Bodegom, et al. (2014) PNAS 111(38):13733-
8; Maire, et al. (2015), Global Ecol. Biogeogr. 24(6):706-17). Our
maps reveal that the most diverse grid cells possess trait variability
close to the range of global PFT means.

plant traits | Bayesian modeling | spatial statistics | global | climate

Modeling global climate and the carbon cycle with Earth
System Models (ESMs) requires maps of plant traits

that play key roles in leaf- and ecosystem-level metabolic
processes (1–4). Multiple traits are critical to both photosyn-
thesis and respiration, foremost leaf nitrogen concentration
(Nm) and specific leaf area (SLA) (5–7). More recently, vari-
ation in leaf phosphorus concentration (Pm) has also been
linked to variation in photosynthesis and foliar respiration (7–
12). Estimating detailed global geographic patterns of these
traits and corresponding trait-environment relationships has
been hampered by limited measurements (13), but recent im-
provements in data coverage (14) allows for greater detail in
spatial estimates of these key traits.

Previous work has extrapolated trait measurements across
continental or larger regions through three methodologies: 1)
grouping measurements of individuals into larger categories
that share a set of properties (a working definition of plant func-
tional types or PFTs) (4, 15), 2) exploiting trait-environment
relationships (e.g. leaf Nm and mean annual temperature)
(1, 16–20), or 3) restricting the analysis to species whose
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Fig. 1. Trait data a) Global locations and values of specific leaf area measurements for the PFT Tropical Broadleaf Evergreen Trees. b) Locations and values of specific leaf
area measurements for the Tropical Broadleaf Evergreen Trees in Panama. The central square indicates a 0.5◦ × 0.5◦ pixel containing the Barro Colorado Island sites (see
Fig. 5). These points have been jittered up to 0.05◦ to highlight the density of measurements. c) The full distribution of specific leaf area values for all species classified as the
Evergreen Broadleaf Tropical Trees. The blue line is the global data while black is the local pixel, the dashed vertical lines are the respective means.

presence has been widely estimated on the ground (21–24).
Each of these methods has limitations - for example, trait-
environment relationships do not well explain observed trait
spatial patterns(1, 25), while species-based approaches limit
the scope of extrapolation to only areas with well measured
species abundance. More critically, the first two global method-
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ologies emphasized estimating a single trait value per PFT
at every location, whereas both ground based (5, 14) and re-
motely sensed (26) observations suggest that at ecosystem or
landscape scales traits would be better represented by distri-
butions. Here, we use an updated version of the largest global
database of plant traits (14) coupled with modern Bayesian
spatial statistical modeling techniques (27) to capture local
and global variability in plant traits. This combination allows
the representation of trait variation both within pixels on a
gridded land surface as well as across global environmental
gradients.

Information is lost when the range of measured trait values
is compressed into a single PFT (Fig. 1). We observe that
the global range of site level SLA values for a single PFT
such as Broadleaf Evergreen Tropical trees (Fig. 1a,c) is quite
large (2.7 to 65.2 m2 kg−1). Even after limiting the scope to
a single well measured 0.5◦ × 0.5◦ pixel within Panama (Fig.
1b,c), there is still a wide range of SLA values (4.7 to 37.7 m2

kg−1) with a local mean of 15.7 m2 kg−1, and a local standard
deviation of 5.4 m2 kg−1 – over 1/3 of the local mean. By
contrast, the mean SLA value of all species associated with
Broadleaf Evergreen Tropical trees is 13.9 m2 kg−1, over 10%
lower than the local average (Fig. 1c). Thus, single trait
values per PFT fail to capture variability in trait values within
or among grid cells; i.e. over a wide range of spatial scales.

Transitioning from a single trait value per PFT (within or
among grid cells) to a distribution may lead to significantly
different modeling results (20) as critical plant processes, such
as photosynthesis, are non-linear with respect to these traits
(28). This is reinforced by recent modeling studies which have
begun to incorporate distributions of traits at regional (29, 30)
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and global (31) scales. It has been shown that using trait
distributions leads to different estimates of carbon dynamics
(32) and that higher order moments of trait distributions
contribute to sustaining multiple ecosystem functions (33).
While species level mapping (21, 23, 24) does capture trait
distributions, it has been limited geographically and restricted
to subsets of functional groups.

Even the largest plant trait database offers only partial
coverage across the globe in terms of site level measurements.
Hence, gap-filling approaches need to be adopted to extrapo-
late trait values at regions with no data coverage. Here, we
overcome data limitations through PFT classification, trait-
environment relationships, and additional location information
to develop a suite of models capable of estimating trait dis-
tributions across the entire vegetated globe. The simplest is
a categorical model, which assigns traits to maps of remotely
sensed PFTs. Every species, with its corresponding trait val-
ues, is associated with a PFT and these trait distributions
are extrapolated to the satellite estimated range of the PFT
(SI Appendix, Figs. S1-S2). The second is a Bayesian linear
model which complements the PFT information with trait-
environment relationships. The third is a Bayesian spatial
model which, in addition to PFTs and the trait-environment
relationships, leverages additional location information via
Gaussian Processes (Methods). The use of a spatial Gaussian
Process in this context is novel and model evaluation reveals
the superior predictive performance of this model.

Each of these methods interpolate (and extrapolate) both
mean trait values and entire trait distributions across space
(i.e. across grid cells on a global map). These models are
further stratified by three different levels of PFT categoriza-
tion: 1) PFT-free, all plants in a single group (i.e., no PFTs);
2) broad, four groups based on growth form and leaf type;
3) narrow, fourteen groups based on further environmental,
phenological, and photosynthetic categories (Methods). The
PFT-free categorization groups all plants into a single class,
while the broad grouping (4-PFT) is similar to the vegetation
classification used in the JULES land surface (34), and the
narrow (14-PFT) category is equivalent to the classification
used in the Community Land Model (4, 15, 35).

The above mentioned methods allow for a representation
of global vegetation that enables a more accurate formulation
of functional diversity than the single trait value per PFT
paradigm that is widely employed (4). The traits studied here
- SLA, Nm, and Pm - are central to predicting variation in
rates of plant photosynthesis (5, 6, 9, 11) and foliar respira-
tion (10, 36). The importance of these traits and the more
advanced representation of functional diversity developed here
may be used to better capture the response of the land surface
component of the Earth System to environmental change.

Results and Discussion

Model Evaluation. Given the full suite of nine models proposed,
we conducted extensive model evaluation (see Table 1) to
determine the trade-offs associated with each methodology
and resolution of PFT. We assessed the predictive capability
of the models using the root mean squared predictive error
(RMSPE) based on out-of-sample data (SI Appendix, Section
S6). Among the nine models, the spatial narrow 14-PFT model
emerged as the best predictor of mean trait values for SLA and
Nm, and the second best for Pm (Table 1). However, the spatial

broad 4-PFT model performed nearly as well (Table 1). The
models’ abilities to correctly estimate the spread of the trait
distributions were assessed using the out-of-sample coverage
probabilities (CP) – the proportion of instances the model
predicted 95% confidence intervals contained the observed
trait values. Most of the models provided adequate coverage
(CP of around 90% or more). See the SI Appendix, Section S4,
for more detailed definitions of the model comparison metrics.

Table 1. Model evaluation

SLA

Model ps-R2 RMSPE CP

Cf NA 8.13 91.2%
Cb 16.9% 7.13 94.7%
Cn 26.0% 6.66 95.8%
Lf 4.6% 7.99 91.3%
Lb 23.4% 6.93 94.0%
Ln 30.7% 6.53 95.2%
Sf 45.5% 7.54 93.6%
Sb 58.5% 6.31 97.7%
Sn 60.2% 6.13 97.7%

Nm

Model ps-R2 RMSPE CP

Cf NA 7.16 93.3%
Cb 12.5% 6.95 93.2%
Cn 19.4% 6.47 92.7%
Lf 5.2% 7.28 93.2%
Lb 16.7% 6.71 94.3%
Ln 24.1% 6.42 94.6%
Sf 44.2% 7.19 93.6%
Sb 53.7% 6.36 96.1%
Sn 54.8% 6.18 96.1%

Pm

Model ps-R2 RMSPE CP

Cf NA 0.86 90.5%
Cb 5.3% 0.86 90.5%
Cn 28.1% 0.78 91.1%
Lf 25.6% 0.84 87.2%
Lb 32.8% 0.85 85.3%
Ln 35.4% 0.82 87.0%
Sf 62.0% 0.83 90.7%
Sb 66.7% 0.81 92.0%
Sn 67.6% 0.80 91.3%

The pseudo-R2 (ps-R2), RMSPE and CP statistics for all nine models,
for each of the three traits. The bold entries correspond to the model
producing highest ps-R2, lowest RMSPE, or CP closest to 0.95. The
categorical PFT-free model (Cf) produces a constant estimate and
hence ps-R2 is not defined. Each model is indicated by a two-letter

abbreviation: C=Categorical (no regression), L=Linear (linear
regression), S=Spatial (linear regression with spatial term) and the
accompanying PFT resolution: f=PFT-free (no PFT information),

b=broad (4-PFT), n=narrow (14-PFT).

The improvement in prediction afforded by the inclusion of
(1) a spatial term and (2) PFT information (Table 1) invites
further examination. First, the spatial term in our model likely
incorporates some of the finer scale variation that is unavailable
given the relatively large grid cell size of the environmental
covariates used in global studies. Thus, the spatial term allows
for adjustment of trait values among neighboring or regional
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a) Spatial Mean

c) Categorical Mean

b) Spatial SD

d) Categorical SD

SLA [m2 kg]

Narrow (14−PFT) Model

Fig. 2. Specific Leaf Area maps a,b) Narrow (14-PFT) Bayesian spatial model pixel mean and standard deviation estimates, respectively c,d) Narrow (14-PFT) Categorical
model pixel mean estimates and standard deviation estimates, respectively. For clarity, the color bars have been truncated at the compound 5th and 95th percentiles of both
models. Latitude tick marks indicate the equator, tropics, and arctic circle and longitude is marked at 100◦W, 0◦, and 100◦E.

grid cells that the relatively coarse environmental metrics are
not able to capture. Finer scale studies that can evaluate local
variations in climate, soil, or other relevant abiotic or biotic
covariates may see less improvement from the inclusion of a
spatial term, as they may directly measure local sources of
variation. Second, the use of PFTs greatly improves the models,
perhaps for similar reasons involving the degree of variation the
raw data fail to incorporate. The greatest decrease in RMSPE
occurs between the PFT-free grouping (a single category for
all plants) and the broad (4-PFT) grouping across each of
the models tested. If our trait data were perfectly predicted
by environment, there would be no usefulness to including
PFTs in mapping traits. That this not is so implies that the
broad PFTs, based primarily on growth form and leaf type,
offer superior predictive skill than environmental covariates on
their own(19). However, the extra information in the narrow
(14-PFT) grouping does further improve the fit and produces
the most accurate predicted trait surface.

Global Maps. We selected two sets of maps to describe, in
broad strokes, how trait distributions vary across the land
surface: the narrow 14-PFT spatial model and its categor-
ical counterpart. The narrow 14-PFT spatial model is the
best predictor of mean trait values, and provided adequate

coverage probability (Figs. 2-4a,b). For comparison, we also
include the 14-PFT categorical model, which is most similar
to maps currently used in ESMs (Figs. 2-4c,d). Maps for the
other models can be found in the supplemental material (SI
Appendix, Figs. S8-S16). The mean and standard deviation
are presented as a summary of the full log-normal distribution
within each pixel, but there are full distributions estimated in
each pixel, see Case Studies below.

The standard deviation maps (Figs. 2-4b,d) compared to
the mean maps (Figs. 2-4a,c) highlight one of the central
results of this analysis – the local standard deviations of trait
values are of similar magnitudes as their respective means.
Generally, we observed that the local standard deviation is
close to half the local mean value but can approach the global
range of the trait mean values, e.g. Nm (Fig. 3) has a maxi-
mum local standard deviation of 9 mg N / g, and the global
mean range is only ≈10 mg N / g. The maps of the trait stan-
dard deviations follow similar patterns to the means, though
there are several regions where the mean varies more markedly
than the standard deviation; such as SLA in the SE United
States and China in the categorical model (Fig. 2c,d) and
similarly for Nm in the spatial model across the Sahel in sub-
Saharan Africa (3a,c). The lack of variation in the standard
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a) Spatial Mean

c) Categorical Mean

b) Spatial SD

d) Categorical SD

Nm [mg/g]

Narrow (14−PFT) Model

Fig. 3. Nitrogen [mass] maps a,b) Narrow (14-PFT) Bayesian spatial model pixel mean and standard deviation estimates, respectively c,d) Narrow (14-PFT) Categorical
model pixel mean estimates and standard deviation estimates, respectively. For clarity, the color bars have been truncated at the compound 5th and 95th percentiles of both
models. Latitude tick marks indicate the equator, tropics, and arctic circle and longitude is marked at 100◦W, 0◦, and 100◦E.

deviation is most clear in the categorical model for Nm while
both models show relatively modest variation in Pm.

For each of the three traits, the broad features of both
the categorical and spatial models are similar, but there are
numerous marked differences across regional and fine spatial
scales (Figs. 2-4). The shared broad features of the maps
from both models include SLA (Fig. 2) and Pm (Fig. 4)
increasing from the tropics to the poles, while Nm (Fig. 3)
has more modest variation, except that it tends to be lower
in regions dominated by needle-leaved trees. Some of the
notable differences between the models include the spatial
model’s greater range and more marked variability of SLA
within equatorial regimes (e.g., Brazil or central Africa); it also
better captures the low SLA of most of arid Australia than
the categorical model (Fig. 2a); and more strongly highlights
the gradient of Pm from the tropics to the arctic (16) (Fig.
4a).

The most consistent estimates between the categorical and
spatial models are in the boreal regions dominated by needle-
leaved trees; the measurements in this region are relatively
sparse which may have limited the ability of the spatial model
to capture differences. On the other hand, broad-leaved trees
span a wide range of environments, but a large portion of the

measurements come from the tropics (66%), where there is
a limited range of values among the climate covariates and
therefore little variation with which to estimate a correlation.
The grasses and shrubs have the largest standard deviations of
the four broad PFTs (SI Appendix, Table S4) and dominate
wide swathes of the land surface, but have fewer measurements
– shrubs are the least measured of the broad PFTs in the
database, and this appears to reduce the accuracy of the
categorical model more than the spatial model (Table 1). The
fact that shrubs are assumed to dominate in arid and boreal
environments, which also tend to be under-sampled, also likely
contributes to these differences.

Our results also suggest that the breadth of functional niche
space is reduced in both boreal and tropical biogeographic
regions. The low variation across all three traits within the
boreal forest implies that there is strong filtering and smaller
niche space available in this relatively harsh environment. Sur-
prisingly, despite the high species diversity in tropical forests,
we also find that SLA and Pm have relatively low variation in
these forests – suggesting that in this environment the trait
space is reduced. This could be, in part, an artifact of the
Earth System Model PFT classification omitting herbaceous
species. Conversely, grasslands and savannahs exhibit large
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a) Spatial Mean

c) Categorical Mean

b) Spatial SD
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Pm [mg/g]

Fig. 4. Phosphorus [mass] maps a,b) Narrow (14-PFT) Bayesian spatial model pixel mean and standard deviation estimates, respectively c,d) Narrow (14-PFT) Categorical
model pixel mean estimates and standard deviation estimates, respectively. For clarity, the color bars have been truncated at the compound 5th and 95th percentiles of both
models. Latitude tick marks indicate the equator, tropics, and arctic circle and longitude is marked at 100◦W, 0◦, and 100◦E.

variation in total trait space, suggesting these environments
permit a wider range of strategies than in both the boreal
and tropical regions. Most broadly, both the data and the
spatial model suggest (SI Appendix, Figs. S24,S25) lowest
leaf nitrogen values in temperate climates; that increase in
both cooler and warmer regions; this may indicate a more
complicated leaf biochemistry-temperature relationship than
has previously been suggested (16).

Case Studies. We conducted two regional case studies to pro-
vide a more in-depth analysis of the true and predicted shapes
of trait distributions than can be provided by the standard
deviation maps and coverage probability. In these case studies
trait data were pooled over an area to construct full trait distri-
butions and then formally compared with the model predicted
distributions.

We considered two areas with substantially different envi-
ronmental conditions to evaluate the trait distributions ob-
tained from the spatial and categorical models. We chose a
single pixel that contained a highly studied site with numerous
measurements of tropical trees, Barro Colorado Island (BCI),
Panama; and a collection of pixels in an arid environment in
which the mean estimates for SLA of the spatial and categori-
cal models substantially disagreed, the southwestern United

States. These areas were in the training data, and this analysis
constituted a more detailed analysis of the models’ fit to the
observed distribution of these locations. Here, the focus was
on the structure of the full distribution of traits predicted
at these sites; Fig. S17 is a map of the measurements that
comprised these locations and other sites included in this anal-
ysis. Both areas offer further insight into the structure of the
distributions estimated by the categorical and spatial models.

In the pixel containing BCI, the categorical and spatial
models broadly agreed for all three traits (Fig. 5a, c, e),
although the spatial model means were only half as distant
from the observed means for SLA and Nm (4% vs. 8% and
5% vs. 10%, respectively). There were only two PFTs present
in this pixel: tropical broadleaf evergreen and deciduous trees.
Despite the general similarity of the shapes of the distribution,
the spatial model appears capable of capturing some subtle
features. This is clearest for leaf nitrogen, where the peak of
the distribution was quite broad. This is neatly captured in the
narrow PFT model, and the pattern was detectable through
the Kolmogorov-Smirnov (K-S) statistic, which evaluates the
similarity of two full distributions. Indeed, the superiority of
the spatial model was reinforced by a closer match for the
Bayesian spatial model across all traits at BCI, though for Pm
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Fig. 5. Empirical trait distributions Barro Colorado Island on the left (a, c, e) and
the US Southwest on the right (b, d, f). The first row is SLA (a, b), the second is
leaf nitrogen (c, d) and the third is leaf phosphorus (e, f). Each panel depicts the
distribution of the data in solid black, the categorical model in blue and the Bayesian
spatial model in red. The vertical lines indicate mean values.

it was the PFT-free spatial model that fit best (SI Appendix,
Table S6).

The differences between the trait distributions of the cate-
gorical and Bayesian spatial models were stark in the south-
western United States, although the mean estimates for Nm

and Pm were close (Fig. 5b, d, f). This may be a result of
the topographic complexity of this region and the resulting
difficulty of aggregating climate and soil covariates at the
0.5◦ pixel scale and the sparser sampling than at BCI. To
get enough data to approximate a distribution, we aggregated
18 pixels with nine PFTs including every temperate category,
though many of them are only marginally present. The inclu-
sion of so many PFTs produced a noisier distribution in the
categorical model than suggested by the data and estimated
by the spatial model. Neither of the models produced distribu-
tions that matched as well with the observations; however, it
is notable how close the mean values for both models matched
the observations for Nm and Pm, and the spatial model did
well for the mean SLA.

Environmental Covariates and the Spatial Term. The improve-
ment in prediction from the linear model to the spatial model
is partially explained by weak trait-environment relationships
(SI Appendix, Tables S1-S3). The magnitude of spatial varia-
tion explained by the Gaussian process model is comparable
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Fig. 6. Spatial learning a) the spatial model standard deviation of Nm. The predicted
variation near the data locations (black dots) are much lower than variation at locations
away from any data point. b) the linear model standard deviation which does not
account for local spatial information has no such pattern.

to the unexplained trait variation. For most of the spatial
models, the estimated spatial range was around 500 kilome-
ters; this suggests a strong spatial effect, and implies that the
spatial model can provide more precise information about the
trait distribution near the locations where we have data. This
was largely borne out in the case studies, and is illustrated
more explicitly in Fig. 6 where the predicted trait standard
deviation for the spatial model was up to 50% lower than the
linear non-spatial model near locations with trait measure-
ments. The spatial model leverages local information to reduce
the uncertainty of trait estimation near data locations and
may provide guidance for future data collection by identifying
high uncertainty regions.

Applications for Trait Distributions. Plant traits vary across a
range of spatial scales, and the spatial model best captures
changes across large spatial gradients (such as in Amazonia
and Australia) as well as the subtleties within pixels. Maps
for all the models highlight how much information about local
variability is lost when representing plant traits with a single
value, and suggests that a first application of these maps
will be for ESMs to incorporate these scales of variability.
For process-based ESMs, the simplest model to incorporate
will likely be the categorical model as it is closest to the
current PFT approach, but this model is also the least flexible.
The more sophisticated models developed here provide more
accurate large scale variation, and may be used to infer new
trait values in a novel climate by perturbing the climatic
covariates (37). However, given the likelihood of non-linear
trait-environment relationships, the spatial sparsity of the
data, and the possibility of alternate strategies within a PFT
that may alter the trait-environment relationship in a future
climate some caution is called for when using these models for
extrapolation. Future ecosystem models could also integrate
the leaf level variation in these maps with canopy scale changes
in leaf display traits - leaf angle, azimuth, and total area.

We have emphasized the quality of the Bayesian spatial
model with narrow PFTs, but there is an intriguing possibil-
ity opened by the PFT-free model (SI Appendix, Fig. S8,
S11, and S14) – that being the representation of vegetation
without reference to PFTs (1). In this case the represen-
tation of vegetation would rely entirely on the structure of
trait distributions at various landscape scales (1). Such a
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representation eliminates the need to separately model the
future locations of PFTs (or species) when inferring the future
distribution of traits; hence, the output of a model like that
developed here could be updated with future environmental
covariates, with the caveats that ‘out of sample prediction’
may entail. At the same time, this method would allow for
greater functional diversity than multiple PFTs with single
trait values, as is currently used in most ESMs. Adopting
this approach does, however, raise the issue of how to deal
with the paucity of surface observations in some regions, as
evidenced by the greater errors associated with estimating out
of sample values with this model (Table 1). Complementary
work has retrieved leaf trait maps from a global carbon cycle
model fused with Earth observations (38), providing another
method that could be used for direct comparison against the
trait maps produced here. While the methodology outlined in
our analysis brings the possibility of a PFT-free land surface
closer, we remain several steps away from being able to make
such maps as accurately as we do using PFT characterizations
for trait prediction. Several actions can bring us closer to that
goal. First, incorporation of additional information (such as
phylogenetic relatedness and trait-trait covariance) will likely
improve trait maps, even using existing observations. Second,
as the current level of observations is extremely sparse in some
regions, and sparse in most, expanded trait databases will also
aid in development of PFT-free trait maps.

Conclusions

SLA and Nm are essential inputs into the land surface compo-
nents of Earth System Models, and while phosphorus has not
yet been as widely incorporated into ESMs, it has been shown
- particularly across the tropics - to be important to photosyn-
thesis (9, 11, 39–42) and respiration (11, 12, 36). The maps
and trait-environment relationships presented here may be
used by existing land surface models that use similar categories
to classify vegetation. However, it should be noted that PFT-
dependent models often have many other parameters that have
been calibrated to historical estimates of particular trait values
(4). Thus, the values developed here, while likely drawing from
a larger pool of measurements than has been done previously
can not necessarily be adopted without further modification
of other model elements (37, 43). Nonetheless, these results
can be incorporated into a wide class of models with relative
ease. We can now provide global trait distributions at the
pixel scale.

The global land surface is perhaps the most heterogeneous
component of the Earth System. Reducing vegetation to a col-
lection of PFTs with fixed trait values has been the preferred
method to constrain this heterogeneity and group similar bio-
chemical and biophysical properties; however, this has been at
the expense of functional diversity. This analysis quantifies the
substantial magnitude of this ignored trait variation. The ap-
proach and methods presented here retain the simplicity of the
PFT representation, but capture a wider range of functional
diversity.

Materials and Methods

Data. The TRY database (www.try-db.org) (14) provided all
data for leaf traits and the categorical traits to aggregate
PFTs (TRY – Categorical Traits Dataset, https://www.try-
db.org/TryWeb/Data.php#3, January 2016) used in the analysis.
See SI Appendix (Appendix 1) for a complete list of the original
publications associated with this subset of TRY. The extract from
TRY used here has just under 45,000 measurements of individuals
from 3,680 species with measurements of at least one of specific
leaf area (SLA), leaf nitrogen per dry leaf mass (Nm), and/or leaf
phosphorus per leaf dry mass (Pm). The number of individual
measurements varies from 32,315 for SLA on 2,953 species to 19,282
for Nm on 3,053 species down to 8,052 for Pm on 1,810 species; see
Table S4 for the number of unique measurements and species found
in all categorizations used in the analysis. The species taxonomy
was standardized using The Plant List (44). Measurements were
associated with environmental categories through Köppen-Geiger
climate zones (45). All environmental variables are on a 0.5◦ × 0.5◦
grid. Climate variables use 30 year climatologies from 1961-1990
as estimated by the Climate Research Unit (46, 47). Soil variables
are from the International Soil Reference and Information Center
- World Inventory of Soil Emission Potentials (ISRIC-WISE) (48).
The spatial extent of PFTs have been previously estimated through
satellite estimates of land cover around the year 2005 (49), and
these estimates have been refined into climatic categories (15, 35).
While TRY, and thus the data used here, represents the largest col-
lection of plant traits in the world most of the measurements come
from a subset of global regions: North America, Europe, Australia,
China, Japan, and Brazil. There are still large sections of the planet
with extremely sparse measurements, notably: much of the tropics
outside of the Americas, large swathes of Central Asia, the Russian
Federation, South Asia and much of the Arctic (SI Appendix, fig.
S17). Improving data collection in these regions will greatly improve
future modeling efforts. Improving data collection in these regions
will greatly improve future modeling efforts. Until observations are
more complete there remains the possibility of spurious patterns,
though we have found little evidence to suggest their presence in
this analysis, even in comparison to detailed regional studies (SI
Appendix, fig. S26) (50).

Classification of PFTs and Categorical Model. We used three nested
levels of PFT classification. In the first level, all plants are catego-
rized into a single group (‘PFT-free’). In the second level (‘broad’),
all plants are categorized into PFTs based on categorical traits as-
sociated with growth form (grass, shrub, tree) and leaf type (broad
and needle-leaved) leading to the following four PFTs: grasses,
shrubs, broad-leaved trees and needle-leaved trees (Fig. S1). In
the third level (‘narrow’), the broad PFTs are further refined by
their climatic region – tropical, temperate, boreal – as well as leaf
phenology, and, for the grasses, photosynthetic pathway (C3 or C4).
This produces 14 PFTs (Fig. S2), which correspond exactly to those
found in the community land model (CLM) (4). Note that these
PFT classifications exclude non-woody eudicots (‘herbs’), which
were excluded from the analysis, on account of their lack of domi-
nance within these PFT categories (51) and therefore, on account
of being widely measured could overly influence the structure of the
trait distributions if they were included. Satellite estimates of the
PFT abundance that correspond to the “narrow” PFT categories
defined above have already been calculated (15, 49) and we used
these to assign a percentage of each 0.5◦ × 0.5◦ pixel to each PFT
present according to the fraction of the land surface within that
pixel occupied by the PFT. The “broad” PFT fractions are calcu-
lated by summing the narrow PFT categories within each “broad”
classification.

The categorical model uses the PFT categories and averages
trait values for each species across individual measurements at each
measured location. This defines the PFT as the interspecies range
of trait values and ignores all local environmental factors. The
results of the categorical model are summarized by the mean and
standard deviation of each PFTs trait values (Table S4) for all three
resolutions of the model. Note that in the PFT-free case where no
PFT information is used, the categorical model produces a constant
trait distribution across the entire vegetated world. The categorical
model, and the Bayesian models described in the following section
all use location specific species mean values to estimate trait dis-
tributions. We assume no intra-specific variation in trait values.
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However, in regions dominated by a small number of species this
may lead to biased predictions. The hyper dominance of a small
group of species in the Amazon has recently been demonstrated
(52) and thus serves as a case study to evaluate our assumption of
equal species weighting (S8, fig. S23). We found that equal weights
(species means) produced trait distribution estimates closest to
those of the hyper dominant trait abundances and this reinforces
the use of this assumption globally. Further, as noted above, the
omission of herbaceous species from tropical regions in this analysis
(and (52)) may unduly limit trait diversity, and calls for further
research.

Bayesian Models. A more fine-tuned depiction of geographical or spa-
tial variation of plant trait values within each PFT can be achieved
by leveraging environmental and location information, which allows
trait values to adjust based on local conditions. Data for 17 climate
(46, 47) and soil based (48) environmental predictors were available
at the 0.5◦ × 0.5◦ pixel resolution used to create the trait maps. To
avoid overfitting and collinearity issues, these seventeen predictors
were screened (see Section S7) based on correlations amongst pre-
dictors, their individual correlation with the traits, and to include
climate covariates along different axes of environmental stress and
both chemical and physical soil covariates. We finally selected five
predictors – mean annual temperature [MAT], total annual radia-
tion [RAD], moisture index (precipitation/evapotranspiration) [MI],
percent hydrogen (aqueous) [pH], and percent clay content [CLY].
Remote sensing data products, such as Normalized Difference Vege-
tation Index (53)), are not used as covariates, to allow for inference
outside of the historical observation period through perturbations
of environmental covariates.

We utilized environment-trait relationships to obtain predictions
of trait values (1, 16–18, 37, 43) in a linear regression setup. The
formal details of the initial model are as follows. We denote log-
transformed trait values at a geographical location s as ytrait(s).
This set of five predictors at a location s is denoted by the vector
x(s) = (x1(s), x2(s), ..., x5(s))′. A linear regression model relating
the trait to the environmental predictors is specified as:

ytrait(s) = b0 + b1x1(s) + b2x2(s) + ...+ b5x5(s) + ε(s) [1]

where bi are the regression coefficients and ε(s) is the error term
explaining residual variation. Estimation of model parameters and
prediction were achieved with a fully Bayesian hierarchical model.
This enables inclusion of prior information and prediction of full trait
distributions instead of representative values (like mean or median)
thereby ensuring that the uncertainty associated with the estimation
of model parameters is fully propagated into the predictive trait
distributions.

We then generalized the above model into a Bayesian spatial lin-
ear regression model that borrows information from geographically
proximal regions to capture residual spatial patterns beyond what
is explained by environmental predictors. A customary specification
of a spatial regression model is obtained by splitting up the error
term ε(s) in Equation (1) into the sum of a spatial process w(s)
and an error term η(s), that accounts for the residual variation
after adjusting for the spatial effects w(s). The underlying latent
process w(s) accounts for local nuances beyond what is captured
by the environmental predictors and is often interpreted as the net
contribution from unobserved or unusable predictors. Gaussian Pro-
cesses (GP) are widely used for modeling unknown spatial surfaces
such as w(s), due to their convenient formulation as a multivariate
Gaussian prior for the spatial random effect, unparalleled predic-
tive performance (54) and ease of generating uncertainty quantified
predictions at unobserved locations. We use the computationally
effective Nearest Neighbor Gaussian Process (27) which nicely em-
beds into the Bayesian hierarchical setup as a prior for w(s) in the
second stage of the model specification. All technical specifications
of the Bayesian spatial model are provided in Section S1 of the
supplementary materials.

The linear regression models used in previous studies (1, 16–18)
and both the spatial and non-spatial Bayesian models described
above assume a global relationship between the traits and environ-
ment. Given the goal of predicting trait values for the entire land
surface, the assumption of a universal trait-environment relationship
may be an oversimplification (55). Moreover, if there is significant
variation in plant trait values among different PFTs, the estimated

parameters will be skewed towards values from abundantly sampled
PFTs, such as broad-leaved trees. Additional information about
plant characteristics at a specific location, if available, can poten-
tially be used to improve predictions. As mentioned earlier, we have
PFT classifications for each observation of the dataset used here
and satellite estimates of PFT abundance at all pixels. The global
regression approaches described above ignores this information and
can yield biased predictions at locations dominated by PFTs poorly
represented in the data, such as shrubs. Hence, we also incorpo-
rate the PFT information in these regression models by allowing
the trait-environment relationship to vary between different PFTs.
Finally, the PFT specific distributions from the Bayesian models
were weighted by the satellite based PFT abundances to create a
landscape scale trait distribution, thereby enabling straightforward
comparison between all three categorizations of PFT. Details of the
PFT based Bayesian models are provided in Section S2. The use
of a Gaussian Process based spatial model as well as the Bayesian
implementation of the regression models were novel to this applica-
tion of plant trait mapping and, as results indicated, were critical
to improving model predictions as well as properly quantifying trait
distributions.

All the code and public data are available from the authors upon
request. The TRY data may be requested from the TRY database
custodians.
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